472 research outputs found

    Towards an operational use of benthic foraminifera for organic pollution monitoring in open and enclosed marine environments: case histories from the outer shelf off Congo and the Firth of Clyde in Scotland.

    Get PDF
    Foraminifera are among the most abundant protists in marine benthic environments. Because of their short life cycles, high biodiversity and specific ecological requirements of individual species, foraminifera react quickly to environmental disturbance, and can be successfully employed as bio-indicators of environmental change, such as those brought about by anthropogenic pollution. In the last decennia, foraminifera have been increasingly used to monitor pollution in a wide range of marine environments, such as intertidal mudflats impacted by oil spillages, harbours affected by heavy metal pollution, or eutrophicated continental shelves. Our best examples of anthropogenic eutrophication are 1) a drill cutting disposal sites at the outer continental shelf off Congo, where we observed a zonation of foraminiferal faunas in the 750 m around the discharge point. In the immediate vicinity of the discharge points (within 70 m), faunas are characterised by low foraminiferal densities. Faunas between 70 m and 250 m of the disposal sites have very high foraminiferal densities, with high percentages of opportunistic taxa such as B. aculeata and B. marginata. Between 250 and 750 m, foraminiferal densities decrease, and the percentages of opportunistic species are lower; 2) a sewage sludge disposal on the sea floor in the Firth of Clyde (Scotland) where we used benthic foraminifera and macrofaunal/meiofaunal assemblages to evaluate the impact. These two communities present a very similar distributional pattern around the disposal site. In its immediate vicinity, both groups show impoverished faunas composed exclusively of species tolerant to strong oxygen depletion. This area is surrounded by an aureole of high density faunas dominated by opportunistic species. Still farther away, faunal density decreases, and equilibrium taxa gradually replace opportunistic species. At about 3 Km of the disposal site, both foraminiferal and macro-/meiofaunal taxa become comparable to those found at the reference station. We used these data to develop a quantitative pollution index, values of which are strongly correlated with the distance to the disposal site. This foraminiferal index offers the possibility to quantify the impact of anthropogenic eutrophication in marine environments, but its validity must be tested in wider range of naturally and anthropogenetically impacted marine environments.Foraminifera are among the most abundant protists in marine benthic environments. Because of their short life cycles, high biodiversity and specific ecological requirements of individual species, foraminifera react quickly to environmental disturbance, and can be successfully employed as bio-indicators of environmental change, such as those brought about by anthropogenic pollution. In the last decennia, foraminifera have been increasingly used to monitor pollution in a wide range of marine environments, such as intertidal mudflats impacted by oil spillages, harbours affected by heavy metal pollution, or eutrophicated continental shelves. Our best examples of anthropogenic eutrophication are 1) a drill cutting disposal sites at the outer continental shelf off Congo, where we observed a zonation of foraminiferal faunas in the 750 m around the discharge point. In the immediate vicinity of the discharge points (within 70 m), faunas are characterised by low foraminiferal densities. Faunas between 70 m and 250 m of the disposal sites have very high foraminiferal densities, with high percentages of opportunistic taxa such as B. aculeata and B. marginata. Between 250 and 750 m, foraminiferal densities decrease, and the percentages of opportunistic species are lower; 2) a sewage sludge disposal on the sea floor in the Firth of Clyde (Scotland) where we used benthic foraminifera and macrofaunal/meiofaunal assemblages to evaluate the impact. These two communities present a very similar distributional pattern around the disposal site. In its immediate vicinity, both groups show impoverished faunas composed exclusively of species tolerant to strong oxygen depletion. This area is surrounded by an aureole of high density faunas dominated by opportunistic species. Still farther away, faunal density decreases, and equilibrium taxa gradually replace opportunistic species. At about 3 Km of the disposal site, both foraminiferal and macro-/meiofaunal taxa become comparable to those found at the reference station. We used these data to develop a quantitative pollution index, values of which are strongly correlated with the distance to the disposal site. This foraminiferal index offers the possibility to quantify the impact of anthropogenic eutrophication in marine environments, but its validity must be tested in wider range of naturally and anthropogenetically impacted marine environments

    Benthic foraminifera as bio-indicators of drill cutting disposal in tropical east Atlantic outer shelf environments

    Get PDF
    We present a study of benthic foraminiferal faunas from the outer continental shelf off Congo (tropical West Africa), with the aim to determine the impact of the discharge of oily drill cuttings on the sea floor environment, to judge the regenerating capacity of the benthic ecosystem, and to investigate the possibility to develop an environmental monitoring method for open marine continental shelf environments, based on benthic foraminifera. We studied the spatial distribution and microhabitats of living and dead foraminiferal faunas, sampled in April 2003, 4 years after the end of disposal activities, in the upper 3 cm of the sediment at 9 stations (about 180 m depth) offshore Congo, that were subject to various degrees of pollution by oily cuttings from 1993 until 1999. Our results describe a zonation of foraminiferal faunas in the 750 m around the former disposal sites. At the immediate vicinity of the discharge points (within 70 m), faunas are characterized by low foraminiferal densities. Faunas between 70 m and 250 m of the disposal sites have very high foraminiferal densities, with high percentages (about 80%) of opportunistic taxa such as Bulimina aculeata, Bulimina marginata, Textularia sagittula, Trifarina bradyi and Bolivina spp. Between 250 and 750 m from the disposal site, foraminiferal densities decrease, and the percentages of opportunistic species are lower (40–60% of indicator species). These results show that 4 years after the cessation of oily cutting disposal, strong environmental impact is limited to the 250 m around the disposal sites. We used these data to develop a quantitative pollution index, values of which are strongly correlated to distance to the disposal site. This foraminiferal index offers the possibility to quantify the impact of anthropogenic eutrophication in continental shelf environments, but its validity must be tested in other continental shelf environments

    Locus coeruleus modulates neuroinflammation in parkinsonism and dementia

    Get PDF
    Locus Coeruleus (LC) is the main noradrenergic nucleus of the central nervous system, and its neurons widely innervate the whole brain. LC is severely degenerated both in Alzheimer’s disease (AD) and in Parkinson’s disease (PD), years before the onset of clinical symptoms, through mechanisms that differ among the two disorders. Several experimental studies have shown that noradrenaline modulates neuroinflammation, mainly by acting on microglia/astrocytes function. In the present review, after a brief introduction on the anatomy and physiology of LC, we provide an overview of experimental data supporting a pathogenetic role of LC degeneration in AD and PD. Then, we describe in detail experimental data, obtained in vitro and in vivo in animal models, which support a potential role of neuroinflammation in such a link, and the specific molecules (i.e., released cytokines, glial receptors, including pattern recognition receptors and others) whose expression is altered by LC degeneration and might play a key role in AD/PD pathogenesis. New imaging and biochemical tools have recently been developed in humans to estimate in vivo the integrity of LC, the degree of neuroinflammation, and pathology AD/PD biomarkers; it is auspicable that these will allow in the near future to test the existence of a link between LC-neuroinflammation and neurodegeneration directly in patients

    Discrete Matter, Far Fields, and Dark Matter

    Get PDF
    We show that in cosmology the gravitational action of the far away matter has quite relevant effects, if retardation of the forces and discreteness of matter (with its spatial correlation) are taken into account. The expansion rate is found to be determined by the density of the far away matter, i.e., by the density of matter at remote times. This leads to the introduction of an effective density, which has to be five times larger than the present one, if the present expansion rate is to be accounted for. The force per unit mass on a test particle is found to be of the order of 0.2cH_0. The corresponding contribution to the virial of the forces for a cluster of galaxies is also discussed, and it is shown that it fits the observations if a decorrelation property of the forces at two separated points is assumed. So it appears that the gravitational effects of the far away matter may have the same order of magnitude as the corresponding local effects of dark matter.Comment: 16 pages, 1 figure. LaTex documen

    Locus Coeruleus and neurovascular unit: From its role in physiology to its potential role in Alzheimer’s disease pathogenesis

    Get PDF
    Locus coeruleus (LC) is the main noradrenergic (NA) nucleus of the central nervous system. LC degenerates early during Alzheimer's disease (AD) and NA loss might concur to AD pathogenesis. Aside from neurons, LC terminals provide dense innervation of brain intraparenchymal arterioles/capillaries, and NA modulates astrocyte functions. The term neurovascular unit (NVU) defines the strict anatomical/functional interaction occurring between neurons, glial cells, and brain vessels. NVU plays a fundamental role in coupling the energy demand of activated brain regions with regional cerebral blood flow, it includes the blood–brain barrier (BBB), plays an active role in neuroinflammation, and participates also to the glymphatic system. NVU alteration is involved in AD pathophysiology through several mechanisms, mainly related to a relative oligoemia in activated brain regions and impairment of structural and functional BBB integrity, which contributes also to the intracerebral accumulation of insoluble amyloid. We review the existing data on the morphological features of LC-NA innervation of the NVU, as well as its contribution to neurovascular coupling and BBB proper functioning. After introducing the main experimental data linking LC with AD, which have repeatedly shown a key role of neuroinflammation and increased amyloid plaque formation, we discuss the potential mechanisms by which the loss of NVU modulation by LC might contribute to AD pathogenesis. Surprisingly, thus far not so many studies have tested directly these mechanisms in models of AD in which LC has been lesioned experimentally. Clarifying the interaction of LC with NVU in AD pathogenesis may disclose potential therapeutic targets for AD

    Relaxation properties in classical diamagnetism

    Get PDF
    It is an old result of Bohr that, according to classical statistical mechanics, at equilibrium a system of electrons in a static magnetic field presents no magnetization. Thus a magnetization can occur only in an out of equilibrium state, such as that produced through the Foucault currents when a magnetic field is switched on. It was suggested by Bohr that, after the establishment of such a nonequilibrium state, the system of electrons would quickly relax back to equilibrium. In the present paper, we study numerically the relaxation to equilibrium in a modified Bohr model, which is mathematically equivalent to a billiard with obstacles, immersed in a magnetic field that is adiabatically switched on. We show that it is not guaranteed that equilibrium is attained within the typical time scales of microscopic dynamics. Depending on the values of the parameters, one has a relaxation either to equilibrium or to a diamagnetic (presumably metastable) state. The analogy with the relaxation properties in the Fermi Pasta Ulam problem is also pointed out

    Benthic foraminifera as bio-indicators of eutrophicated environments

    Get PDF
    Foraminifera are among the most abundant protists in marine benthic environments (Murray, 1991). Because of their short life cycles, high biodiversity and specific ecological requirements of individual species, foraminifera react quickly to environmental disturbance, and can be successfully employed as bio-indicators of environmental change, such as those brought about by anthropogenic pollution (as defined by Kramer and Botterweg, 1991). Foraminiferal assemblages are easy to collect; foraminifera are commonly abundant, providing a highly reliable database for statistical analysis, even when only small sample volumes are available. Furthermore, many foraminiferal taxa secrete a carbonate shell, and leave an excellent fossil record, that may be used to characterise baseline conditions, and to reconstruct the state of the ecosystem prior to sampling. Studies of the effects of pollution on benthic foraminiferal assemblages, and their possible use as pollution indicators were initiated in the early 1960’s by Resig (1960) and Watkins (1961). In the last decennia, foraminifera have been increasingly used to monitor pollution in a wide range of marine environments, such as intertidal mudflats impacted by oil spillages (Morvan et al., 2004), harbours affected by heavy metal pollution (Armynot Du Châtelet et al., 2004), or eutrophicated continental shelves (Sharifi et al., 1991; Yanko and Flexer, 1991). The goal of our study is to compare different types of eutrophicated environments, under anthropogenic or natural conditions:  we used benthic foraminifera as bio-indicators of anthropogenic eutrophication caused by drill cutting discharges (Congo and Gabon), by sewage sludge (Firth of Clyde; Scotland) and by fish farms (Loch Etive; Scotland) and compared the faunal patterns with those observed in the Rhone prodelta, en environment characterised by strong natural eutrophication due to  important continental nutrient input

    Can Beach Cleans Do More Than Clean-Up Litter? Comparing Beach Cleans to Other Coastal Activities

    Get PDF
    Coastal visits not only provide psychological benefits but can also contribute to the accumulation of rubbish. Volunteer beach cleans help address this issue, but may only have limited, local impact. Consequently, it is important to study any broader benefits associated with beach cleans. This article examines the well-being and educational value of beach cleans, as well as their impacts on individuals’ behavioral intentions. We conducted an experimental study that allocated students (n = 90) to a beach cleaning, rock pooling, or walking activity. All three coastal activities were associated with positive mood and pro-environmental intentions. Beach cleaning and rock pooling were associated with higher marine awareness. The unique impacts of beach cleaning were that they were rated as most meaningful but linked to lower restorativeness ratings of the environment compared with the other activities. This research highlights the interplay between environment and activities, raising questions for future research on the complexities of person-environment interaction

    Chaoticity threshold in magnetized plasmas : numerical results in the weak coupling regime

    Get PDF
    The present paper is a numerical counterpart to the theoretical work [Carati et al., Chaos 22, 033124 (2012)]. We are concerned with the transition from order to chaos in a one-component plasma (a system of point electrons with mutual Coulomb interactions, in a uniform neutralizing background), the plasma being immersed in a uniform stationary magnetic field. In the paper [Carati et al., Chaos 22, 033124 (2012)], it was predicted that a transition should take place when the electron density is increased or the field decreased in such a way that the ratio between plasma and cyclotron frequencies becomes of order 1, irrespective of the value of the so-called Coulomb coupling parameter. Here, we perform numerical computations for a first principles model of N point electrons in a periodic box, with mutual Coulomb interactions, using as a probe for chaoticity the time-autocorrelation function of magnetization. We consider two values of Coulomb coupling parameter (0.04 and 0.016) in the weak coupling regime, with N up to 512. A transition is found to occur for ratio between plasma and cyclotron frequencies in the range between 0.25 and 2, in fairly good agreement with the theoretical prediction. These results might be of interest for the problem of the breakdown of plasma confinement in fusion machines
    • …
    corecore